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4 Posets and lattices

4.1 Partial orders

Many important relations cover some idea of greater and smaller: the partial orders.

4.1 Definition. An (endo)relation v (“under”) on a set P is called a partial order if
it is reflexive, antisymmetric, and transitive. We recall that this means that, for all
x, y, z∈P , we have:

• xv x ;

• xv y ∧ y v x ⇒ x= y ;

• xv y ∧ y v z ⇒ xv z .

The pair (P, v ) is called a partially ordered set or, for short, a poset .
Two elements x and y in a poset (P, v ) are called comparable if xvy or yvx ,

otherwise they are called incomparable, that is, if ¬(xvy) and ¬(yvx) .
A partial order is a total order , also called linear order , if every two elements are

comparable.
2

4.2 Lemma. For every poset (P, v ) and for every subset X of P , the pair (X, v ) is
a poset too.
2

4.3 Example.

• On every set, the identity relation I is a partial order. It is the smallest possible
partial order relation on that set.

• On the real numbers R the relation ≤ is a total order: every two numbers
x, y∈R satisfy x≤ y or y≤x . Restriction of ≤ to any subset of R – for
example, restriction to Q,Z,N – also yields a total order on that subset.

• The power set P(V ) of a set V , that is, the set of all subsets of V , with
relation ⊆ (subset inclusion), is a poset. This P contains a smallest element,
namely ø , and a largest element, namely V itself.

• The relation | (“divides”) is a partial order on the positive naturals, defined
by

x | y ⇔ (∃z : z ∈ N : x ∗ z = y).

2

4.4 Definition. The irreflexive part of a partial order relation v is denoted by <

(“strictly under”) and is defined by, for all x, y∈P :
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x< y ⇔ xvy ∧ x 6= y .

2
It is straightforward to prove that the relation < is irreflexive, antisymmetric

and transitive. Further, it directly follows from the definition that for all x, y∈P :
xv y ⇔ x<y ∨ x= y .

4.5 Lemma. If (P, v ) is a poset, then the corresponding directed graph, with vertex
set P and arrows (x, y) whenever x<y , is acyclic.
2

If we want to draw a picture of a finite poset, with the greater elements on top
and the smaller elements below, and an arrow from x to y if x v y holds, we usually
do not draw the whole graph. Edges from a node x to itself, representing x v x are
not drawn, and an edge from x to y with x v y is only drawn if there is no z, distinct
from both x and y, for which we have x v z and z v y. The resulting directed graph is
called the Hasse diagram for (P,v), named after the German mathematician Helmut
Hasse (1898-1979). Hasse diagrams are drawn in such a way that two vertexes x and
y with x v y are connected by an edge going upwards. In Theorem ?? we will see
that this is always possible. Consequently, the edges in Hasse diagrams do not need
an arrow point to indicate the direction. For example the Hasse diagram for the poset
(P({a , b , c}) ,⊆) is drawn as in Figure 23.

{a, b, c}

{a, c}{a, b} { b, c}

{ b}{a} { c}

ø

Figure 23: A Hasse diagram of (P({a, b, c}) , ⊆ )

* * *

There are various ways of constructing new posets out of old ones. We discuss some
of them. In the sequel both (P, v ) and (Q, v ) are posets. Notice that we use
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the same symbol, v , for the two different partial order relations on sets P and
Q . If confusion may arise we distinguish the two relations by using vP and vQ ,
respectively.

• As already stated in Lemma 4.2, for every subset X of P the pair (X, v )
is a poset, with relation v restricted to X . Thus restricted v is called the
induced order on X .

• Relation w (“above”), defined by, for all x, y∈P , xwy ⇔ yvx is a partial
order too, called the dual order to v ; hence, (P, w ) also is a poset.

• Let V be a set. On the set V →P of functions from V to P we can define a
partial order vVP , say, as follows, for all f, g ∈ V →P :

f vVP g ⇔ (∀v : v∈V : f(v) vP g(v) ) .

Then (V →P , vVP ) is a poset.

• On the Cartesian product P×Q we can define a partial order as follows. For
(p, q) , (x, y) ∈ P×Q we define:

(p, q) v (x, y) ⇔ p vP x ∧ q vQ y .

Thus defined relation v is a partial order, called the product order on P×Q .

• On the Cartesian product P×Q we also can define a partial order as follows.
For (p, q) , (x, y) ∈ P×Q we define:

(p, q) v (x, y) ⇔ (p 6=x ∧ p vP x ) ∨ (p=x ∧ q vQ y ) .

This relation v is a partial order too, called the lexicographic order on P×Q .

The notions of product order and lexicographic order can be extended to (finite)
products of more than two sets.

A poset’s structure is determined by its partial order relation, as denoted by v in the
previous section. Sometimes we wish to prove equalities in a poset, and then it can
be convenient if we can reformulate an equality in terms of the partial order relation:
that enables us to reason in terms of the partial order.

The following lemma provides such a connection between equality and the partial
order.

4.6 Lemma. In every poset (P, v ) we have, for all x, y ∈P :

(a) x = y ⇔ (∀z : z∈P : xvz ⇔ yvz ) ;

(b) x = y ⇔ (∀z : z∈P : zvx ⇔ zvy ) .
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Proof. We prove (a) only; the proof of (b) follows, mutatis mutandis, the same pat-
tern. We do so by mutual implication.

“⇒ ”: Assuming x= y we may substitute x for y and vice versa wherever we like; in
particular, if we substitute x for y in our demonstrandum (∀z : z∈P : xvz ⇔ yvz ) ,
we obtain (∀z : z∈P : yvz ⇔ yvz ) , which is true because of the reflexivity of ⇔ .

“⇐ ”: Assuming (∀z : z∈P : xvz ⇔ yvz ) , by the instantiation z := x we obtain
xv x ⇔ y v x , which is equivalent to y v x , because v is reflexive. Moreover, by
the instantiation z := y we obtain xv y ⇔ y v y , which is equivalent to xv y . By
the antisymmetry of v we conclude x= y , as required.
�

4.2 Extreme elements

4.7 Definition. For any subset X of a poset (P, v ) we define, for all m∈P :

(a) m is X ’s maximum, or largest element if:

m∈X ∧ (∀x : x∈X : xvm ) .

(b) m is X ’s minimum, or least element if:

m∈X ∧ (∀x : x∈X : mvx ) .

(c) m is a maximal element of X if:

m∈X ∧ (∀x : x∈X : ¬ (m<x) ) .

(d) m is a minimal element of X if:

m∈X ∧ (∀x : x∈X : ¬ (x<m) ) .

2

Note that by definition ¬(m<x) is equivalent to mvx ⇒ x = m, so maximality
of m can be reformulated as m∈X ∧ (∀x : x∈X : mvx ⇒ x = m) , and similar
for minimality.

Notice the difference between the notions “maximum” and “maximal”. A value
m∈P is X ’s maximum if m∈X and all elements in X are under m , whereas m
is a maximal element of X if m∈X and X contains no elements strictly above m .

A subset of a partially ordered set does not necessarily contain such extreme
elements. The next lemma states that if it exists, however, the maximum of a subset
is unique, and so is the minimum, if it exists. If subset X has a maximum we denote
it by maxX , and its minimum we denote by minX .

4.8 Lemma. Let X be a subset of a poset (P, v ) . If m and n both are X ’s maximum
then m=n . If m and n both are X ’s minimum then m=n .
2
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Proof. Assume that both m and n are a maximum of X, then by definition m,n ∈ X
and (∀x : x ∈ X : xvm ∧ xvn). So we both have nvm and mvn. Since v is
anti-symmetric we conclude m = n. �

A subset of a partially ordered set does not necessarily contain maximal or mini-
mal elements. Such elements are not unique either: a subset may have many maximal
or minimal elements. As a rather trivial example, consider poset (P, IP ) , where the
identity relation IP is the smallest possible partial order on P: x IP y ⇔ x= y . With
this particular order all elements of a subset X⊆P both are maximal and minimal.

4.9 Definition. Let (P, v ) be a poset. If the whole set P has a minimum this is
often denoted by ⊥ (“bottom”), and if P has a maximum this is often denoted by
> (“top”). If P has a minimum the minimal elements of P \{⊥} are called P ’s
atoms.

4.10 Example.

• If we consider the poset of all subsets of a set V , then the empty set ø is the
minimum of the poset, whereas the whole set V is the maximum. The atoms
are the subsets of V containing just a single element.

• In the poset (N+, | ) the whole set, N+ , has no maximum. Its minimum,
however, equals 1 . The atoms are the prime numbers. Surprisingly, in the poset
(N, | ) the whole set N has a maximum: the element 0, since by definition
every number is a divisor of 0.

• If (P, v ) is totally ordered then subset {x , y } has a maximum and a minimum,
for all x, y ∈P .

2

4.11 Lemma. In a poset (P, v ) for every subset X its maximum, if it exists, is a maximal
element of X ; also, its minimum, if it exists, is a minimal element of X .

Proof. Assume m is the maximum of X. Then m ∈ X and xvm for all x ∈ X.
Choose x ∈ X satisfying mvx. Then using antisymmetry and xvm we conclude
x = m, so proving mvx ⇒ x = m. This proves that m is maximal.

The proof for minimal/minimum is similar. �

4.12 Lemma. If a poset (P, v ) is a total order then every subset X⊆P has at most one
maximal element, which then also is its maximum. Also, X has at most one minimal
element, which then also is its minimum.

Proof. Assume that m is maximal in X and n ∈ X. Then by definition ¬(m<n), so
m = n or ¬(mvn). If ¬(mvn) then from totality we conclude mvn. So in both
cases we have mvn. This proves that m is the maximum of X. If moreover n is
maximal too, we similarly prove nvm, so by antisymmetry we conclude m = n.

The proof for minimal/minimum is similar. �
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4.13 Lemma. Let (P, v ) be a nonempty and finite poset. Then P contains a maximal
element and a minimal element.
Proof. Choose x1 ∈ P arbitrary. For i = 1, 2, 3, . . . choose xi+1 such that xi <xi+1,
that is, xivxi+1 and xi 6= xi+1. If at some point no such xi+1 exists, we have found
a maximal element xi.

Otherwise, the process goes on forever yielding an infinite sequence

x1 <x2 <x3 <x4 <x5 < · · · .

Since P is finite, not all xi can be distinct, so there is some i < j such that xi = xj .
So xiv∗xj−ivxj = xi. For a transitive relation R one easily proves by induction
Rn ⊆ R for n > 0. So if i < j − 1 then xivxj−1. If i = j − 1 then xi = xj−i, so
in all cases we conclude xivxj−1. So xivxj−1vxj = xi. Now antisymmetry yields
xj−1 = xj , contradicting the requirement xi 6= xi+1 in the construction for all i.

�

4.14 Theorem. [ Topological sorting ] For any finite poset (P, v ) with #P = n there
exists f : P → {1, 2, . . . , n} such that x<y⇒f(x) < f(y) for all x, y ∈ P .

Proof. We prove the theorem by induction on n = #P . For n = 1 we define
f(x) = 1 for the single element x of P .

For n > 1 we choose p ∈ P such that p is maximal in P ; this is possible by
Lemma 4.13. By the induction hypothesis there exists f ′ : P \ {p} → {1, . . . , n − 1}
such that f ′(x) < f ′(y) for all x, y ∈ P \ {p}. Next we define f : P → {1, . . . , n} by
f(p) = n and f(x) = f ′(x) for x 6= p. It remains to prove that f(x) < f(y) for all
x, y ∈ P satisfying x<y, which we do by case analysis:

• x = p does not occur since x<y contradicts maximality of x = p,

• if y = p then x ∈ P \ {p}, so

f(x) = f ′(x) ≤ n− 1 < n = f(p) = f(y),

• if x 6= p 6= y then f(x) = f ′(x) < f ′(y) = f(y).

�

Topological sorting justifies the existence of Hasse diagrams: if every node x is
drawn on height f(x), then for every x<y the element y is drawn higher than x.

4.15 Example. Topological sorting has various applications. For example consider a (so-
called) spreadsheet . In a spreadsheet the values in various cells depend on each other,
but, in a correct spreadsheet, in an acyclic way only. The value in any particular cell in
the spreadsheet can only be computed if the values in all cells on which this particular
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cell depends have been computed already. Therefore, an efficient implementation of
these computations requires that they are performed in the “right” order. This gives
rise to a partial order on the set of cells within a spreadsheet. By topological sorting
the set of cells can be linearized in such a way that every cell precedes all cells
depending on it; thus the computations of the values in the cells can be performed in
a linear order.

4.3 Upper and lower bounds

4.16 Definition. For any subset X of a poset (P, v ) we define, for all m∈P :

(a) m is an upper bound of X if: (∀x : x∈X : xvm )

(b) m is a lower bound of X if: (∀x : x∈X : mvx )

2

4.17 Properties.

(a) If P has a maximum > then > is an upper bound of every subset of P .

(b) If P has a minimum ⊥ then ⊥ is a lower bound of every subset of P .

(c) Every element in P is an upper bound and a lower bound of ø .

(d) If it exists maxX is an upper bound of X , for all X⊆P .

(e) If it exists minX is a lower bound of X , for all X⊆P .

2

For any subset X⊆P we can consider the set {m∈P | (∀x : x∈X : xvm ) }
of all upper bounds of X . This set may or may not have a minimum. If it has a
minimum, this minimum is called the supremum of X , notation supX . Alternatively,
it is sometimes also called X ’s least upper bound , notation lubX .

Similarly, we can consider the set {m∈P | (∀x : x∈X : mvx ) } of all lower
bounds of X . This set may or may not have a maximum. If it has a maximum, this
maximum is called the infimum of X , notation infX . Alternatively, it is sometimes
also called X ’s greatest lower bound , notation glbX .

By combination of the definitions of maximum/minimum and of upper/lower
bounds we can define supremum and infimum in a more direct way.

4.18 Definition. For any subset X of a poset (P, v ) we define, for all m∈P :

(a) m is X ’s supremum if both:

(∀x : x∈X : xvm ) , and:

(∀x : x∈X : xvz ) ⇒ mv z , for all z∈P .

Notice that the first requirement expresses that m is an upper bound of X ,
and that the second one expresses that m is under all upper bounds of X .
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(b) m is X ’s infimum if both:

(∀x : x∈X : mvx ) , and:

(∀x : x∈X : zvx ) ⇒ z vm , for all z∈P .

2

4.19 Example.

• For a set V its power set P(V ) – the set of all subsets of V – with relation ⊆ is a

poset, and any subset X of P(V ) has a supremum, namely (
⋃

U :U∈X U ) ,and

an infimum, namely (
⋂

U :U∈X U ) .

• The set N+ of positive natural numbers with relation | (“divides”) is a poset.
The supremum of two elements a, b∈N+ is their least common multiple, that
is, the smallest of all positive naturals m satisfying a|m and b|m ; usually,
this value is denoted by lcm(a, b) .

Similarly, the greatest common divisor of a and b , denoted by gcd(a, b) , is
the infimum of {a , b} .

2

4.20 Lemma. For poset (P, v ) and for p∈P we have: sup{p} = p and inf{p} = p .

Proof. By Definition 4.18, to prove sup{p} = p we must prove:

(∀x : x∈{p} : xvp )

⇔ { definition of {p} }
(∀x : x= p : xvp )

⇔ { 1-pt. rule }
p v p

⇔ { v is reflexive }
true ,

and, for all z∈P :

(∀x : x∈{p} : xvz )

⇔ { same steps as above }
p v z ,

which is the desired result.
�

4.21 Lemma. In a poset (P, v ) any subset X⊆P for which supX exists satisfies, for
all m∈P :
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m = maxX ⇔ m = supX ∧ m∈X ,

similarly, if infX exists then, for all m∈P :

m = minX ⇔ m = infX ∧ m∈X .

Proof. By direct application of the definitions of max and sup , and of min and inf
respectively.
�

Corollary: If poset (P, v ) is such that supP exists then supP = maxP , and
if infP exists then infP = minP .

2

An important difference between supremum and maximum of a set is that a set’s
supremum may or may not be an element of that set, whereas a set’s maximum always
is an element of that set. The above lemma states, however, that if a set’s supremum
is in that set, then this supremum also is the set’s maximum.

The following lemma provides a different but equivalent characterization of supre-
mum and infimum that occasionally turns out to be very useful.

4.22 Lemma. Let X be a subset of a poset (P, v ) . For m∈P we have:

(a) m is X ’s supremum if and only if:

(∀z : z∈P : mv z ⇔ (∀x : x∈X : xvz ) ) .

(b) m is X ’s infimum if and only if:

(∀z : z∈P : z vm ⇔ (∀x : x∈X : zvx ) ) .

Proof. We prove (a) only; the proof for (b) follows, mutatis mutandis, the same pat-
tern. Firstly, we let m be X ’s supremum according to Definition 4.18. Then, for
z∈P we prove the equivalence of mv z and (∀x : x∈X : xvz ) , by “cyclic implica-
tion”:

m v z

⇔ { Definition 4.18: m is an upper bound of X }
(∀x : x∈X : xvm ) ∧ m v z

⇒ { ∀ introduction }
(∀x : x∈X : xvm ) ∧ (∀x : x∈X : mvz )

⇔ { combining terms }
(∀x : x∈X : xvm ∧ mvz )

⇒ { v is transitive }
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(∀x : x∈X : xvz )

⇒ { Definition 4.18: m is under all upper bounds }
m v z .

Secondly, let m satisfy:

(2) (∀z : z∈P : mv z ⇔ (∀x : x∈X : xvz ) ) .

Then we must prove that m is X ’s supremum. Well, m is an upper bound:

(∀x : x∈X : xvm )

⇔ { (2) , with z := m }
m vm

⇔ { v is reflexive }
true ,

and that m is under all upper bounds follows directly from (2) , because ⇔ is
stronger than ⇒ .
�

4.23 Properties.

(a) If P has a maximum > then > = supP and > = inf ø .

(b) If P has a minimum ⊥ then ⊥ = infP and ⊥ = sup ø .

2

4.4 Lattices

4.4.1 Definition

In the previous section we have introduced the notions of supremum – least upper
bound – and infimum – greatest lower bound – of subsets of a poset. Generally, such
a subset does not have a supremum or an infimum, just as, generally, not every
subset has a maximum or a minimum. (Recall Lemma 4.21, for the relation between
supremum and maximum, and between infimum and minimum, respectively.)

Partially ordered sets in which particular subsets do have suprema and/or infima
are of interest. We will study three types of such posets, called “lattices”, “complete
lattices”, and “complete partial orders”.

4.24 Definition. A poset (P, v ) is a lattice, if for all x, y ∈P the subset {x , y } has a
supremum and an infimum. Because this pertains to two-element sets, it is customary
to use infix-notation to denote their suprema and infima. For this purposes binary
operators t (“cup”) and u (“cap”) are used: the supremum of {x , y } then is
written as x t y and its infimum as x u y .
2
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4.25 Example. Here are some examples of lattices we already encountered before.

• (R, ≤) is a lattice. For x, y ∈R we have: x t y = xmax y and x u y = xmin y .

• For a set V the poset (P(V ) , ⊆ ) is a lattice, with t = ∪ and u = ∩ .

• The poset (N+ , | ) is a lattice, with a t b = lcm(a, b) and a u b = gcd(a, b) .

2

The following lemma actually is a special case of Lemma 4.22, namely for non-
empty subsets with at most two elements; that is, this is Lemma 4.22 with X := {x , y } .

4.26 Lemma. In every lattice (P, v ) we have, for all x, y, z ∈P :

(a) x t y v z ⇔ x v z ∧ y v z ;

(b) z v x u y ⇔ z v x ∧ z v y .

2

Actually, this lemma can serve as an alternative definition of t and u , as the
original definition follows from it. As a special case, we obtain the following lemma,
expressing that x t y is an upper bound and that x u y is a lower bound.

4.27 Lemma. In every lattice (P, v ) we have, for all x, y ∈P :

(a) x v x t y ∧ y v x t y ;

(b) x u y v x ∧ x u y v y .

Proof. Instantiate Lemma 4.26 with z := x t y and z := x u y , respectively.
�

4.28 Lemma. In every lattice (P, v ) we have, for all x, y ∈P :

(a) x v y ⇔ x t y = y ;

(b) x v y ⇔ x u y = x .

Proof. We prove (a) only, by calculation:

x t y = y

⇔ { v is reflexive and antisymmetric }
x t y v y ∧ y v x t y

⇔ { x t y is an upper bound of y }
x t y v y

⇔ { Lemma 4.26 , with z := y }
x v y ∧ y v y

⇔ { v is reflexive }
x v y�
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4.4.2 Algebraic properties

The lattice operators have interesting algebraic properties, as reflected by the follow-
ing theorem.

4.29 Theorem. Let (P, v ) be a lattice. Then for all x, y, z ∈P we have:

(a) x t x = x and x u x = x : t and u are idempotent ;

(b) x t y = y t x and x u y = y u x : t and u are commutative;

(c) x t (y t z) = (x t y) t z and x u (y u z) = (x u y) u z : t and u are

associative;

(d) x t (x u y) = x and x u (x t y) = x : absorption.

Proof.

(a) See Lemma 4.20.

(b) By symmetry: set {x , y } equals set {y , x} .

(c) By (Lemma 4.6), for all w∈P :

x t (y t z) v w

⇔ { Lemma 4.26 }
x v w ∧ y t z v w

⇔ { Lemma 4.26 }
x v w ∧ y v w ∧ z v w

⇔ { Lemma 4.26 }
x t y v w ∧ z v w

⇔ { Lemma 4.26 }
(x t y) t z v w .

(d) We prove x t (x u y) = x only, by calculation:

x t (x u y) = x

⇔ { Lemma 4.28 }
x t (x u y) v x

⇔ { Lemma 4.26 }
x v x ∧ x u y v x

⇔ { v is reflexive, and x u y is a lower bound of x }
true .
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�

Conversely, the following theorem expresses that every structure with operators
having the above algebraic properties “is” – can be extended into – a lattice.

4.30 Theorem. Let P be a set with two binary operators t and u ; that is, these
operators have type P×P → P . Let these operators have algebraic properties (a)
through (d), as in the previous theorem. Then the relation v , on P and defined by
xv y ⇔ x t y = y for all x, y ∈P , is a partial order, and (P, v ) is a lattice.
2

A direct consequence of Theorem 4.29, particularly of the associativity of the
operators, is that every finite and non-empty subset of a lattice has a supremum and
an infimum. Notice that the requirement “non-empty” is essential here: in a lattice
the empty set may not have a supremum or infimum.

4.31 Theorem. Let (P, v ) be a lattice. Then every finite and non-empty subset of P
has a supremum and an infimum.

Proof. By Mathematical Induction on the size of the subsets, and using Theorem 4.29.
�

4.4.3 Distributive lattices

The prototype example of a lattice is the poset of all subsets of a set V , with ⊆
as the partial order relation. As already mentioned, in this lattice set union, ∪ ,
and intersection, ∩ , are the binary lattice operators. In this particular lattice, the
operators have an additional algebraic property, namely (mutual) distributivity ; that
is, “∪ distributes over ∩ ” and “∩ distributes over ∪ ”, respectively:

X ∪ (Y ∩Z) = (X∪Y ) ∩ (X∪Z) , for all X,Y, Z ⊆V ;

X ∩ (Y ∪Z) = (X∩Y ) ∪ (X∩Z) , for all X,Y, Z ⊆V .

Generally, lattices do not have these properties. They do satisfy, however, a weaker
version of these properties, namely “in one direction” only.

4.32 Theorem. Let (P, v ) be a lattice. Then for all x, y, z ∈P we have:

(a) x t (y u z) v (x t y) u (x t z) ;

(b) (x u y) t (x u z) v x u (y t z) .

Proof.

(a) By calculation:
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x t (y u z) v (x t y) u (x t z)

⇔ { Lemma 4.26(b) }
x t (y u z) v x t y ∧ x t (y u z) v x t z

⇔ { Lemma 4.26(a) (twice) }
x v x t y ∧ y u z v x t y ∧ x v x t z ∧ y u z v x t z

⇔ { Lemma 4.27(a) (twice) }
y u z v x t y ∧ y u z v x t z

⇐ { v is transitive (twice) }
y u z v y ∧ y v x t y ∧ y u z v z ∧ z v x t z

⇔ { Lemma 4.27(a) (twice) and Lemma 4.27(b) (twice) }
true .

(b) By duality.

�

As we have seen, some lattices – like (P(V ) ,⊆) – do satisfy the distribution
properties. Such lattices are called “distributive”.

4.33 Definition. A distributive lattice is a lattice (P, v ) in which t and u distribute
over each other; that is, for all x, y, z ∈P :

(a) x t (y u z) = (x t y) u (x t z) ;

(b) x u (y t z) = (x u y) t (x u z) .

2

4.34 Example. Not every lattice is distributive. The smallest example illustrating this has
5 elements >, a, b, c,⊥ , say, with this partial order: ⊥ is under all elements, a, b, c
are under > and are mutually incomparable. (See the Hasse diagram in Figure 24.)
In this lattice a t (b u c) = a whereas (a t b) u (a t c) = > .

4.4.4 Complete lattices

4.35 Definition. A complete lattice is a partial order in which every subset has a supre-
mum and an infimum. In particular, the whole set has a supremum and an infimum,
usually denoted by > and ⊥ , respectively. Notice that > and ⊥ also are the lat-
tice’s maximum and minimum. (Recall Property 4.23.)
2
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>

a b c

⊥

Figure 24: The smallest non-distributive lattice

4.36 Lemma. Every finite lattice is complete.

Proof. Let (P, v ) be a finite lattice. By Theorem 4.31 this lattice is almost complete
already: every non-empty subset has a supremum and an infimum, so all we must do
is prove that ø has a supremum and an infimum. From Property 4.23 we know that
sup ø = ⊥ and inf ø = > .
�

4.37 Example. The power set (P(V ) ,⊆) of all subsets of a set V is a complete lat-
tice. The supremum of a set X of subsets of V is the union of all sets in X ,
which is (

⋃
U :U∈X U ) ; its infimum is the intersection of all its elements, which is

(
⋂

U :U∈X U ) .

2

4.38 Example. The poset (R, ≤) is a lattice, but it is not complete, but every closed inter-
val [ a , b ] , with a≤ b and with the same partial order ≤ , is a complete (sub)lattice.
2

Completeness is a strong property, so strong, actually, that we only have to prove
half of it: if every subset has an infimum that it also has a supremum, so if every
subset has an infimum the partial order is a complete lattice.

4.39 Theorem. Let (P, v ) be a poset. Then:

(a) “Every subset of P has an infimum” ⇒ “(P, v ) is a complete lattice” ;

(b) “Every subset of P has a supremum” ⇒ “(P, v ) is a complete lattice” .

Proof. We prove (a) only. To prove this we assume that every subset of P has an
infimum. Then, to prove that (P, v ) is complete we only must prove that every
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subset of P has a supremum. So, let X be a subset of P . We define a subset Y by
Y = { y∈P | (∀x : x∈X : xvy) } , that is, Y is the set of all upper bounds of X .
Now let m = inf Y . We prove that this m is X ’s supremum.

“m is an upper bound of X”:

(∀x : x∈X : xvm)

⇐ { m is Y ’s greatest lower bound }
(∀x : x∈X : (∀y : y∈Y : xvy) )

⇔ { exchanging dummies }
(∀y : y∈Y : (∀x : x∈X : xvy) )

⇔ { definition of Y }
(∀y : y∈Y : y∈Y )

⇔ { predicate calculus }
true .

“m is under all upper bounds of X”: For any y∈P we derive:

(∀x : x∈X : xvy)

⇔ { definition of Y }
y ∈Y

⇒ { m is a lower bound of Y }
m v y .

�

remark: In the proof of this theorem we introduced set Y as the set of all upper
bounds of X . It is possible that X has no upper bounds, in which case Y
is empty . This is harmless, because if every subset has an infimum then so
has the empty set. Thus, this proof crucially depends on the property that
also the empty set has an infimum. Recall that in a non-complete lattice the
empty set does not need to have an infimum or supremum. (Also see the
discussion preceding Theorem 4.31.)

2

4.5 Exercises

1. Consider the poset (N+, | ) . Let A = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

(a) Establish all minimal and maximal elements of A.

(b) Give a subset of four elements of A that has a maximum.

(c) Give a subset of four elements of A that has a minimum.
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2. Draw the Hasse diagram of

{X ⊆ {1, 2, 3, 4} | 2 ∈ X ∨ 3 6∈ X}

with respect to the partial order ⊆.

3. Let (P, v ) be a poset. Recall that for all x, y∈P :

x< y ⇔ xvy ∧ x 6= y .

Prove that the relation < is irreflexive, antisymmetric, and transitive.

4. Let (P, v ) be a poset. Prove that for all x, y ∈P :

(a) x v y ⇔ (∀z : z∈P : xvz ⇐ yvz ) ;

(b) x v y ⇔ (∀z : z∈P : zvx ⇒ zvy ) .

5. Let (P, v ) be a poset and X a subset of P . Prove that an element m∈X is
maximal if and only if for all x∈X we have mvx ⇒ m= x .

6. A poset (U,v) is given with two subsets X and Y for which sup(X) and sup(Y )
exist, and sup(X) ∈ Y . Prove that sup(Y ) is an upper bound of X.

7. Let (U,v) be a poset and f : U → U a function. Define the relation ≤ on U by

x ≤ y ⇐⇒ f(x) v f(y).

(a) Prove that (U,≤) is a poset if f is injective.

(b) Give an example of a poset (U,v) and a non-injective function f : U → U
such that (U,≤) is not a poset.

8. Consider the poset (N+, | ) .

(a) Establish the supremum and the infimum of {1, 2, 3, 4, 5}.
(b) Establish the supremum and the infimum of {1, 2, 3, 4, 6, 12}.
(c) Establish the supremum and the infimum of {3, 4, 5, 15, 20, 60}.
(d) Establish the supremum and the infimum of {3, 4, 5, 12}.
(e) Establish the supremum and the infimum of the set of all even numbers.

For all set also establish whether the set has a minimum and/or a maximum.

9. Let (U,v) be a poset. Two sets A,B ⊆ U are given, for which sup(A) exists,
and for which b ∈ B is minimal in B and sup(A) v b. Prove that A ∩B ⊆ {b}.

10. Let (P, v ) be a lattice and x, y, z ∈P . Prove that:

(a) x v y ⇒ x t z v y t z ;

(b) x v z ⇒ z t (x u y) = z .
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11. We consider the poset (Q , ≤) .

(a) Prove that the set {x∈Q | x< 1} has no maximum.

(b) Prove that this set has a supremum.

12. We consider a poset (P, v ) ; let X and Y be subsets of P such that supX
and inf Y both exist. In addition it is given that xv y , for all x∈X and y∈Y .
Prove that supX v inf Y .

13. We consider a poset (P, v ) ; let X be a subset of P .

(a) Prove that if X contains two (different) maximal elements then X has no
maximum.

(b) Prove that if (∀x, y : x, y∈X : xvy ∨ yvx ) and if X contains a maximal
element then X has a maximum.

14. In the figure below you see three diagrams. Which of these diagrams are Hasse
diagrams? Which of these diagrams represents a lattice?

15. Show that every lattice with at most 4 elements is distributive.

16. Is the poset (N+ , | ) a complete lattice? How about (N , | ) ?

17. Suppose (P, v ) is a lattice and a, b∈P with a v b . Prove that ( [ a , b ] , v )
is a lattice too. Here [ a , b ] denotes the interval from (and including) a upto
(and including) b ; how would you define this interval?

18. Let (P, v ) be a lattice. Prove that if t distributes over u then u also
distributes over t .

19. Prove that, in a complete lattice (P, v ) , the extreme element > is the identity
element of u and a zero element of t . Similarly, show that ⊥ is the identity
of t and a zero of u .


